Synthesis of C-4-Substituted Qinghaosu Analogues

Ya-Jing Rong and Yu-Lin Wu*
State Key Laboratory of Bio-organic and Natural Products Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

4-Demethyl- and 4-demethyl-4-ethyl-deoxoqinghaosu, analogues of the antimalarial drug qinghaosu, have been synthesized from the diketone 5, an acidic degradation product of qinhaosu.

Qinghaosu (artemisinin) 1, ${ }^{1}$ extracted from the Chinese herb qinghao (Artemisia annua. L.), has received increasing attention because of its significant antimalarial activity against widespread drug-resistant strains of P. falciparum and its unique $1,2,4$-trioxane sesquiterpene structure. Although a number of qinghaosu analogues have been synthesized in attempts to provide drugs with greater antimalarial activity than the parent compound, ${ }^{2}$ few details of the molecular basis for its antimalarial activity are known.

As part of our research program, we have studied the structure-activity relationships (SAR) for various qinghaosu analogues. Recently, we reported the synthesis of, amongst others, several carba analogues of qinghaosu, ${ }^{3}$ and showed that the peroxide bridge was a crucial feature for antimalarial activity. ${ }^{4}$ We then synthesized a novel qinghaosu derivative, deoxoqinghaosu $2,{ }^{5}$ possessing higher activity, ${ }^{4}$ an indication that the carbonyl group was not an essential feature. Lately, a series of qinghaosu analogues lacking a lactone carbonyl group at C-12 have also been studied, ${ }^{6}$ many of which have superior activity to qinghaosu. So far, however, nothing was known about the effect of 4-methyl group on antimalarial activity. Herein, we present a successful synthesis of 4-demethyl- 3 and 4-ethyl-4-demethyl-deoxoqinghaosu 4, the first representatives

1

$2 \mathrm{R}=\mathrm{Me}$
$3 \mathrm{R}=\mathrm{H}$
$4 \mathrm{R}=\mathrm{Et}$
of C-4 substituted qinghaosu derivatives. Since the 4 -methyl group is that nearest to the crucial $1,2,4$ trioxane structure in qinghaosu, it is expected that the above-mentioned analogues will provide useful information about the SAR of qinghaosu. Furthermore, the synthetic methodology described herein may be advantageously employed in the synthesis of many other useful derivatives (e.g. isotopically labelled compounds).

The potential for synthesis of the diketone $5,{ }^{7}$ prepared from acidic degradation of qinghaosu, makes it a useful intermediate for qinghaosu analogues, particularly so since its skeleton is of the correct configuration. A strategy for the conversion of diketone 5 into qinghaosu analogues 3 and 4 is outlined in Scheme 1
Cyclization of the diketone 5 with $\mathrm{Ba}(\mathrm{OH})_{2}$ as base in MeOH gave the acid $6(86 \%)$. Methylation of 6 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether afforded the ester $7(100 \%)$ which was then condensed with tosylhydrazide to give $\mathbf{8}$ quantitatively. Reduction of $\mathbf{8}$ with bis(benzoyloxy)borane ${ }^{8}$ in alcohol-free chloroform at $0^{\circ} \mathrm{C}$ furnished the methylene ester 9 (78% yield) which was further

Scheme 1 Reagents and conditions: i, $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{MeOH} \cdot$ ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; iii, TsNHNH ${ }_{2}$; iv, BH(OCOPh $)_{2}$, then $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O} ; \mathrm{v}, \mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O} ;$ vi, $\mathrm{O}_{3}, \mathrm{Zn}-\mathrm{HOAc} ; \mathrm{PPTS}$, toluene; vii, ${\mathrm{EtMgBr}, \mathrm{Et}_{2} \mathrm{O} \text {; viii, DMSO, }}^{2}$ $(\mathrm{COCl})_{2} ;$ ix, ${ }^{1} \mathrm{O}_{2}$, Methylene Blue, $-78^{\circ} \mathrm{C}$, then TMSOTf
reduced with lithium aluminium hydride to afford the alcohol 10 (99% yield). Ozonolysis of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1)$ solution of 10 at $-78^{\circ} \mathrm{C}$ followed by treatment with p-TsOH-toluene gave the enol ether $\mathbf{1 1}(34 \%)$ after flash column chromatography. Photooxidation of $\mathbf{1 1}$ in the presence of Methylene Blue at
$-78^{\circ} \mathrm{C}$ under a stream of oxygen and subsequent in situ treatment with trimethylsilyl trifluoromethanesulfonate (TfOTMS) ${ }^{5}$ provided compound $3(15 \%)$ and a by-product 3a (11%). That the relative stereochemistry was identical was confirmed by 2D NMR (COSY and NOESY).

Treatment of 11 with ethylmagnesium bromide at $0^{\circ} \mathrm{C}$ in dry ether afforded the alcohol $12(98 \%)$ which was readily converted into 13 even by a trace acid; thus, the avoidance of oxidation reagents (e.g. PCC or PDC) was necessary. Careful oxidation of 12 with $(\mathrm{COCl})_{2}-$ DMSO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$ provided 14 (62%). Irradiation of the enol ether 14 (Methylene Blue, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}_{2},-78^{\circ} \mathrm{C}$) followed by cyclization with TfOTMS yielded $4(26 \%)$ and $\mathbf{4 a}(9.4 \%)$.

Experimental *

Photooxidation of the Cyclic Enol Ether 11.-Oxygen was passed into a solution of the cyclic enol ether $11(100 \mathrm{mg}, 0.45$ mmol) and Methylene Blue (5 mg) in methylene dichloride (40 cm^{3}) at $-78^{\circ} \mathrm{C}$, whilst it was irradiated with a sodium lamp for 1 h . To the reaction mixture was added TMSOTf $\left(4 \mathrm{~mm}^{3}\right)$ under nitrogen. After neutralization with triethylamine, the reaction mixture was warmed to room temperature and concentrated under reduced pressure. Silica gel column chromatography of the oily residue gave $3(17 \mathrm{mg}, 15 \%)$ and $3 \mathrm{a}(12 \mathrm{mg}, 11 \%)$. For 3, $[\alpha]_{\mathrm{D}}^{20}=+26.4 \dagger$ (c 0.4 , chloroform); $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $5.63(\mathrm{~d}, J 6.7, \ddagger 1 \mathrm{H}, 4-\mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 3.72(\mathrm{dd}, J 3.3,11.7$, $1 \mathrm{H}, 12 \alpha-\mathrm{H}), 3.47(\mathrm{t}, J 11.7,1 \mathrm{H}, 12 \beta-\mathrm{H}), 0.98(\mathrm{~d}, J 6.6,3 \mathrm{H}, 13-$ CH_{3}) and $0.79\left(\mathrm{~d}, J 7.2,3 \mathrm{H}, 14-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 82.84 (C-4), 82.16 (C-5), 74.68 (C-6), 66.29 (C-12), 52.20 (C-1), 45.27 (C-7), 37.48 (C-10), 34.07 (C-9), 31.02 (C-3), 27.89 (C-11), $23.51(\mathrm{C}-2), 20.59(\mathrm{C}-8), 20.37(\mathrm{C}-14)$ and $13.15(\mathrm{C}-13) . \mathrm{v} / \mathrm{cm}^{-1}$ 1080, 870 and $840 ; m / z 255\left(\mathrm{M}^{+}+1\right)$ and $236\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$. [Found (HRMS): $m / z 236.1412\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}-\mathrm{H}_{2} \mathrm{O}\right)$. Calc., 236.1437]. For 3a, m.p. $104-105^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}=+15.3$ (c 0.1 , chloroform); $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.52(\mathrm{~d}, J 4.6,1 \mathrm{H}, 4-\mathrm{H})$, 4.79 (s, 1 H, 5-H), 4.13 (dd, J 11.1, 3, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 3.49 (dd, $J 1.1,11.1,1 \mathrm{H}, 12 \alpha-\mathrm{H}), 1.13\left(\mathrm{~d}, J 7.4,3 \mathrm{H}, 13-\mathrm{CH}_{3}\right), 0.88$ (d, $\left.J 6.7,3 \mathrm{H}, 14-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.69,95.43$, 86.43, 69.63, 66.82, 34.17, 31.32, 31.60, 31.06, 29.69, 24.44, 23.50, 14.22 and $13.85 ; v / \mathrm{cm}^{-1} 1090,890$ and $840 ; m / z 254\left(\mathrm{M}^{+}\right)$ and $236\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ [Found (HRMS): m/z 254.1518 $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}\right)$. Calc., 254.1543].

Photooxidation of the Cyclic Enol Ether 14.-Oxygen was passed into a solution of the cyclic enol ether $14(180 \mathrm{mg}, 0.72$ mmol) and Methylene Blue (5 mg) in methylene dichloride (50 cm^{3}) at $-78^{\circ} \mathrm{C}$, whilst it was irradiated with a sodium lamp for

50 min . To the reaction mixture was added TMSOTf $\left(20 \mathrm{~mm}^{3}\right)$ under nitrogen. After addition of triethylamine ($0.4 \mathrm{~cm}^{3}$), the reaction mixture was warmed to room temperature, and concentrated under reduced pressure. Silica gel column chromatography of the oily residue gave 4 ($52 \mathrm{mg}, 26 \%$) and 4 a ($19 \mathrm{mg}, 9.4 \%$). For 4, m.p. $64-65^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+89.1$ (c 0.73 , CHCl_{3}); $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.20(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 3.71$ (dd, J4.2, $11.7,1 \mathrm{H}, 12 \alpha-\mathrm{H}), 3.44(\mathrm{t}, J 11.7,1 \mathrm{H}, 12 \beta-\mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}, 11-$ H), $0.97\left(\mathrm{~d}, J 6.4,3 \mathrm{H}, 14-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{t}, J 7.6,3 \mathrm{H}, 16-\mathrm{CH}_{3}\right)$ and $0.78\left(\mathrm{~d}, J 7.3,3 \mathrm{H}, 13-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 105.71(\mathrm{C}-4)$, 92.04 (C-5), 80.91 (C-6), 66.21 (C-12), 52.19 (C-1), 44.91 (C-7), 37.31 (C-10), 34.07 (C-15), 33.84 (C-3), 32.30 (C-9), 27.97 (C11), 24.66 (C-2), 20.29 (C-14), 20.74 (C-8), 13.10 (C-13) and 6.95 (C-16); $v / \mathrm{cm}^{-1} 1070,880$ and $830 ; m / z 282\left(\mathrm{M}^{+}\right), 250\left(\mathrm{M}^{+}-\mathrm{O}_{2}\right)$ [Found (HRMS) m/z $250.1933 \quad\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}-\mathrm{O}_{2}\right)$ Calc., 250.1984]. For 4a, $[\alpha]_{\mathrm{D}}^{20}+26.2\left(c 0.57, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.80(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 4.13$ (dd, $J 11.0,2.8,1 \mathrm{H}, 12 \beta-\mathrm{H}$), 3.48 (dd, $J 11.0,1.2,1 \mathrm{H}, 12 \alpha-\mathrm{H}), 1.13\left(\mathrm{~d}, J 7.2,3 \mathrm{H}, 13-\mathrm{CH}_{3}\right)$, $1.02\left(\mathrm{t}, J 7.2,3 \mathrm{H}, 16-\mathrm{CH}_{3}\right)$ and $0.87\left(\mathrm{~d}, J 6.6,3 \mathrm{H}, 14-\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 107.72,96.12,85.90,69.14,66.80,34.19$, $33.47,31.69,31.29,30.00,29.70,24.70,24.45,14.21,13.87$ and $8.14 ; v_{\text {max }} / \mathrm{cm}^{-1} 1090,885$ and $840 ; m / z 282\left(\mathrm{M}^{+}\right)$and $264\left(\mathrm{M}^{+}\right.$ $-\mathrm{H}_{2} \mathrm{O}$) [Found (HRMS) $282.1988 \quad\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}\right)$. Calc., 282.2001].

References

1 Qinghaosu Antimalarial Coordinating Research Group, Chin. Med. J., 1979, 92; for comprehensive review, see: D. L. Klayman, Science 1985, 228, 1049; X. D. Luo and C. C. Shen, Med. Res. Rev., 1987, 7, 29; A. R. Butler and Y.-L. Wu, Chem. Soc. Rev., 1992, 85.

2 B. Ye and Y.-L. Wu, J. Chem. Soc., Chem. Commun., 1990, 726; M. Jung, H. N. El Sohly and E. M. Croom, J. Org. Chem., 1986, 51, 5417; R. K. Haynes and S. C. Von Willer, J. Chem. Soc., Chem. Commun., 1990, 451; M. A. Avery, C. Jennings-White and W. K. M. Chong, J. Org. Chem., 1989, 54, 1792; M. A. Avery, W. K. M. Chong and J. E. Bupp, J. Chem. Soc., Chem. Commun., 1990, 1487; W. H. Bunnelle, T. A. Isbell, C. L. Barnes and S. Qualls, J. Am. Chem. Soc., 1991, 113, 8186; G. H. Posner, C. Ho-oh, L. Gerena and W. K. Milhous, J. Med. Chem., 1992, 35, 2459.

3 B. Ye and Y.-L. Wu, Tetrahedron, 1989, 45, 7287.
4 B. Ye, Y.-L. Wu, G.-F. Li and X.-Q. Jiao, Acta Pharmaceut. Sinica, 1991, 26, 228.
5 B. Ye, Y.-L. Wu, J. Chem. Soc., Chem. Commun., 1990, 726.
6 Y. Li, P.-L. Yu, Y.-X. Chen, L.-Q. Li, Y.-Z. Gai, D.-S. Wang and Y.-P. Zheng, Acta Pharmaceut. Sinica, 1981, 16, 429; M. Jung, D. A. Bustos, H. N. El Sohly and J. D. McChesney, Synlett., 1990, 743.

7 Y. Li, P.-L. Yu, Y.-X. Chen, J.-L. Zhang, Y.-L. Wu, Kexue Tongbao, 1986, 31, 1038.
8 G. W. Kabalka and S. T. Summers, J. Org. Chem., 1981, 46, 1217.

Paper 3/03617K
Received 24th June 1993
Accepted 21st July 1993

